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In this work, we conduct a computational study on the loading of cryoprotective

agents into cells in preparation for cryopreservation. The advantages of microfluidics

in cryopreserving cells include control of fluid flow parameters for reliable

cryoprotectant loading and reproducible streamlined processing of samples. A 0.25 m

long, three inlet T-junction microchannel serves as an idealized environment for this

process. The flow field and concentration distribution are determined from a

computational fluid dynamics study and cells are tracked as inert particles in a

Lagrangian frame. These particles are not confined to streamlines but can migrate

laterally due to the Segre-Sildeberg effect for particles in a shear flow. During this

tracking, the local concentration field surrounding the cell is monitored. This data are

used as input into the Kedem-Katchalsky equations to numerically study passive

solute transport across the cell membrane. As a result of the laminar flow, each cell

has a unique pathline in the flow field resulting in different residence times and a

unique external concentration field along its path. However, in most previous studies,

the effect of a spatially varying concentration field on the transport across the cell

membrane is ignored. The dynamics of this process are investigated for a population

of cells released from the inlet. Using dimensional analysis, we find a governing

parameter a, which is the ratio of the time scale for membrane transport to the average

residence time in the channel. For a <¼ 0:224, cryoprotectant loading is completed to

within 5% of the target concentration for all of the cells. However, for a > 0:224, we

find the population of cells does not achieve complete loading and there is a

distribution of intracellular cryoprotective agent concentration amongst the population.

Further increasing a beyond a value of 2 leads to negligible cryoprotectant loading.

These simulations on populations of cells may lead to improved microfluidic

cryopreservation protocols where more consistent cryoprotective agent loading and

freezing can be achieved, thus increasing cell survival. VC 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4793714]

I. INTRODUCTION

The cryopreservation of cells and tissues has become a practical way of storing biomaterials

in a variety of disciplines and industries.1–6 Cryopreservation is critical to long term storage and

off-the-shelf availability.3,7 Typical cryopreservation protocols aim to remove intracellular water

to avoid damaging intracellular ice formation (IIF).8 This is usually accomplished by exposing

the sample to a cryoprotective agent (CPA) to create an osmotic pressure gradient. These chemi-

cals can be either permeable CPAs, which penetrate the cellular membrane and replace intracellu-

lar water, or impermeable CPAs, which dehydrate the cell by drawing out intracellular water.8
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While CPAs are useful in preventing cell damage due to IIF, the dehydration process introduces

cells to an osmolality gradient, inducing harmful osmotic shock.3,9 Complicating the process

further, the CPAs themselves can be toxic to cells.8,10,11

Two potential methods of cryopreservation are generally employed for cryopreservation:

freezing and vitrification. The former uses lower CPA concentrations and slower cooling

rates, which minimize osmotic shock and cytotoxicity effects, while being more susceptible

to IIF. In the latter, high CPA concentrations are used with rapid cooling rates. This generally

minimizes IIF at the expense of exposing the cell to potentially lethal osmostic gradients and

toxic reagents. Since both methods require CPA loading and unloading, an understanding of

the trans-membrane transport processes would be beneficial to optimizing protocols that

would improve cell viability.

Mass transport of a non-electrolyte solute and the resulting water transport are typically

modeled by the Kedem-Katchalsky (KK)12 equations. The equations for water flux and CPA

flux across the membrane are given as:3,9,13,14

Jw ¼ LpDP� LprRTDC; (1)

Pi � Pe ¼ E
V � V0

V0

þ Pi
0 � Pe

0; (2)

dVw

dt
¼ JwA; (3)

Jc ¼ ð1� rÞCJw þ xRTDC; (4)

dVc

dt
¼ JcA: (5)

In Eqs. (1)–(5), Jw and Jc are the water flux and cryoprotectant flux, respectively, Lp is the

hydraulic conductivity, DP is the trans-membrane pressure gradient, r is the CPA reflection

coefficient, R is the universal gas constant, T is absolute temperature, DC is the trans-

membrane concentration gradient, Vw and Vc are the water volume and cryoprotectant molality,

respectively, A is the cell’s surface area, x is the CPA permeability through the membrane, and

C is the average of the internal and external CPA concentrations. Kleinhans provides an excel-

lent review of these equations and when simplifications from the three parameter model to a

two parameter model are appropriate.15

In traditional cryopreservation protocols, all cells are placed in a constant concentration

for a prescribed time period. Due to the osmotic stresses and toxicity introduced to the cells,

stepwise introduction of CPAs has been used; still, prescribed concentration and exposure time

(along with any steps in concentration) are both known and constant for all cells. Modeling

these scenarios has become fairly routine as Eqs. (1)–(5) are two coupled non-linear differential

equations, which can be solved readily computationally. However, this could be further compli-

cated by allowing a time dependent external cellular concentration (in the DC term). In an

effort to account for the replacement time of a perfusion solution in their microdevice, Chen

et al. have made the external concentration a time dependent term.16,17 While a constant exter-

nal concentration is valid for batch systems, it is not necessarily so for flow systems which

have non-zero spatial concentration gradients due to incomplete mixing. Although a microde-

vice may operate at steady state, each cell will move through this device and encounter differ-

ent extracellular concentrations as a function of time. While there has been a recent push to

optimize cryopreservation protocols for survivability and throughput,2,4,11,18 to optimize CPA

loading in microfluidic devices, a more rigorous approach is necessary.

Microfluidic devices have been finding widespread utility in bioengineering and biomedical

applications, including recent applications to CPA loading and unloading protocols. They offer

reproducible, high-throughput analysis while minimizing sample volume and reagent consump-

tion.19,20 Microfluidic channels typically operate at Reynolds numbers (Eq. (6)) on the order of
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unity and Peclet numbers (Eq. (7)) on the order of 1000, indicating a lack of turbulence and

that diffusion will be a relatively slow process compared to convection through the channel

Re ¼ uwq
l

; (6)

Pe ¼ uw

Dab
: (7)

In Eqs. (6) and (7), u, w, q, l, and Dab are the characteristic velocity, distance, density, viscosity,

and mass diffusivity of the system. The resulting lack of mixing in high Peclet number, convec-

tion dominated environments, has often been lamented as a pitfall of lab-on-a-chip devices. A va-

riety of micromixers have been developed to overcome this problem and its associated chal-

lenges.21–25 However, the laminar flow in microdevices has also been used advantageously.

Spherical particles in laminar shear flow experience a lift force, which causes them to migrate to

an equilibrium position. This is known as the Segre and Silberberg effect.26 The effect is

observed in long channels, and the magnitude of this force is dependent on the particle Reynolds

number. It has been used in microchannels as a means for particle separation based on size.27

Recent work on cryoprotectant loading and unloading on a chip has also used the lack of

turbulence in microdevices to their advantage, where the lack of fluid mixing allows a slow

introduction of CPA to the cell.9,10,18,28–32 Song et al.9 have shown that the gradual loading of

CPA into the cell improves cell survival compared to traditional methods. They argue the less

dramatic water flux across the membrane is responsible for the improved cell viability by limit-

ing osmotic shock. The application of microfluidics to the CPA loading process also meets the

needs cited by researchers in the cryopreservation field, namely, the ability to create high-

throughput, readily reproducible, and streamlined processes needed in research and industry.2,4,6

With a stable of advantages and the decreasing cost of device fabrication, microfluidic devices

have the potential to become commonplace in cryopreservation protocols.

Previous modeling work on CPA loading in microfluidic devices has been devoid of dis-

crete cells traveling throughout the channel. The concentration along a single streamline has

been input into the external concentration9 for CPA loading, and a CPA source/sink term

(depending on whether CPA is entering or exiting the cell) has been included in the species

transport equation.28–30 The former does not capture the true trajectory of a single cell, which

will experience forces due to the shear flow in the long microchannel; the latter does not moni-

tor the changes in volume or internal concentration among the cells. Neither of these methods

capture the dynamics across a population of cells, which will have a distribution of residence

times as well as external concentration profiles. Furthermore, the utilization of constant fluid

properties in the previous simulations could be a source for error, especially given the disparity

between the viscosities of common CPAs and water.

Prior to their modeling, Song et al.9 made the KK equations dimensionless and they arrive

at a characteristic time, t0, for transport across the membrane

t0 ¼
V0

A0RTC0Lp
: (8)

It is important to note that t/t0 equal to one does not mean that the transport process across the

membrane has reached equilibrium; in batch processes (where the extracellular concentration is

maintained at C0) this occurs around t/t0 of between 5 and 6. The residence time is a natural

time scale for convection in a microchannel,

s ¼ L

u
: (9)

Taking the ratio of these two time scales allows us to determine the relative magnitude of each

process (analogous to the Peclet number as the ratio of convection to diffusion). This results in
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a ¼ t0

s
¼ uV0

LA0RTC0Lp
: (10)

If t0 � s, we expect complete CPA loading; for s� t0 we expect the cells will move through

the channel faster than any appreciable loading can take place; for s � 5t0 (t0 is a characteris-

tic time scale, but not the time for the process to complete as noted earlier) we expect a

distribution of intracellular CPA concentration where loading will be appreciable but

incomplete.

In this work, we simulate the loading of 1,2-propanediol (a common cryoprotectant agent)

across an idealized cell membrane in a T-channel. Fig. 1 shows a schematic of the simulated

device. This microchannel could easily be folded into a serpentine-like geometry to minimize

the chip footprint.9 However, the 0.25 m pathlength is necessary to provide adequate residence

time for membrane transport to occur and the cells to reach equilibrium with their environment.

Two possibilities exist for extending the residence time in the channel: (1) decreasing the

Reynolds number, or (2) increasing the channel length. Since the latter is not ideal in microflui-

dics where chip footprint is paramount (and to maintain sufficient accuracy in a long simulation

domain), in this work, we investigate the membrane transport over a range of flow rates in a

channel of fixed length.

FIG. 1. The three inlet T-Channel simulation geometry. The inset highlights the mesh resolution at the junction of the three

inlets.
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II. METHODS

A. Fluid flow modeling

The computational fluid dynamics package ANSYS FLUENT v13 (Ansys, Inc., Canonsburg,

PA) was used to solve the steady state continuity, conservation of momentum, and species con-

tinuity (Eqs. (11)–(14)) using the finite volume method

r � ðquÞ ¼ 0; (11)

r � ðquuÞ ¼ �rpþr � ðsÞ þ qf g; (12)

s ¼ l½ðruþruTÞ � 2

3
ðr � uIÞ�; (13)

r � ðCiuÞ ¼ �r � Ji; (14)

Ji ¼ �DabrCi: (15)

In Eqs. (11)–(14): u is the fluid velocity, q is the fluid density, l is the fluid viscosity, Ci is the

concentration of species i, and Dab is the mass diffusivity. Local fluid properties of the CPA-

water mixture were calculated by mass averaging the local density and viscosity in each finite

volume element. The diffusivity of propanediol in water was calculated using a modified

Wilke-Chang equation33

D12 ¼ 10� 10�8 M
1=2
1 T

lmixV
1=3
1 V

1=3
2

: (16)

In Eq. (16), D12 is the local mass diffusivity, M1 is the molecular weight of the solvent, T is

the absolute temperature, V1 is the molal volume of solvent, V2 is the molal volume of solute,

and lmix is the local viscosity of the mixture.

The boundary conditions for the Navier-Stokes equations were specified as the same con-

stant normal velocity at all three inlets and zero pressure at the outlet. The no-slip boundary

condition was specified at all walls. For the species continuity equation, constant inlet concen-

trations were specified for the sample and sheath inlets. A convective flux condition was speci-

fied at the outlet, with a zero flux boundary condition specified on the walls.

B. Particle tracking

Lagrangian particle tracking was used in FLUENT to simulate cells as inert spherical particles

inside the channel. Once the steady state flow field is solved in the domain, spherical particles

are released from each finite volume face on the center inlet. The position and velocity of the

particles as they progress through the microdevice are calculated via a force balance on the

particles,

dup

dt
¼ FDðuf � upÞ þ g

ðqp � qf Þ
qp

þ F; (17)

FD ¼
18l
qpd2

p

CDRep

24
; (18)

Rep ¼
qf dpjup � uf j

l
; (19)

F ¼
2K�

1
2qf dij

qpdpðdlkdklÞ
1
4

ðuj; f � uj; pÞ: (20)
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In Eqs. (17)–(20), FD is the drag force on the particle, uf is the fluid velocity, up is the particle

velocity, g is the acceleration due to gravity, qp is the particle density, qf is the fluid density, F
is the Saffman lift force due to shear, CD is the drag coefficient for smooth and spherical par-

ticles, Rep is the particle Reynolds number, dp is the particle diameter, K is a constant coeffi-

cient of Saffman’s lift force (and is set to 2.594), � is the fluid kinematic viscosity, and dij is

the deformation tensor.

Particles are released from each face of the sample inlet and the particle tracking continues

for each particle until they exit the channel. One-way steady coupling was used between the

discrete phase and the continuous phase (the discrete phase was assumed to cause negligible

disturbances on the dynamics of the continuous phase). The particles used in the Lagrangian

tracking are point particles; a particle diameter and density are specified to solve the force bal-

ance equations, but the particles do not occupy a physical space and hence they are allowed to

overlap. Particle-particle interactions (collisions, drafting) are not included in this work. The

particle time-step was controlled using a custom user-defined function in FLUENT that allowed a

maximum particle time step of 0.001 s. This was done to maintain accuracy during the particle

position integration, as well as providing a sufficient number of concentration data points as

inputs into the KK equations. As each particle progresses through the domain, the local CPA

concentration of each particle is recorded at each time step.

C. Membrane transport modeling

After fluid flow and particle tracking simulations are complete, the transient local CPA

concentration data for each particle is imported into MATLAB (MathWorks, Natick, MA). As pre-

viously discussed, membrane permeability to non-electrolytes is modeled by the Kedem-

Katchalsky equations, Eqs. (1)–(4); in this work, these equations are solved numerically using a

4th order Runge-Kutta scheme. While our model captures water efflux out of the cell, the dilu-

tion of the local external concentration around each cell is assumed to be negligible. The cellu-

lar density is assumed to be constant; that is, removal of water and introduction of CPA does

not change the density used in Eqs. (17) and (18). Table I shows the parameters used in these

equations.

We study the importance of the relative time for membrane mass transport and transport of

the cell from inlet to outlet. In this work, our models are tested over a range of a from 0.05 to

10. Select times and parameters for Eq. (10) are shown in Table II.

III. RESULTS

A. Simulation validation

Accurately capturing the fluid flow and mass transport in the microchannel are critical in

modeling the mass transport across the membrane. In Fig. 2, we compare our results to an

TABLE I. Model parameters for the Kedem-Katchalsky equations9 and fluid dynamics equations.

Parameter Value

Initial cell diameter, d0
p 1� 10�5 ðmÞ

Hydraulic conductivity, Lp 6:09� 10�15 ðm3=N sÞ
Permeability, x 1:08� 10�15 (kmol/N s)

Reflection coefficient, r 0.8

Particle (cell) density, qp 1030 (kg/m3)

CPA density, qCPA 1036 (kg/m3)

CPA viscosity, lCPA 0.0404 (Pa s)

Water density, qH2O 998 (kg/m3)

Water viscosity, lH2O 0.001 (Pa s)
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analytical expression and experimental data for the velocity profile in a rectangular duct. This

validation study uses the same geometry and mesh as in the remainder of our studies, but with

pure water entering each of the inlets. The analytical expression34

ux ¼ ð1� jnjmÞð1� jfjnÞ (21)

is an empirical approximation of the more rigorous solution for laminar flow in a rectangular

duct. Here, n and f are scaled distances in the y and z directions, respectively, and m and n are

empirically determined coefficients that depend on the aspect ratio of the rectangular duct. We

achieve excellent agreement with both the analytical expression and the experimental results,

indicating that our model can capture the fluid flow accurately.

We perform mesh dependence studies to determine the effect of changing the mesh reso-

lution. These tests were performed at several inlet flow rates, with CPA entering from the

sheath inlets and water entering from the sample inlet. The numerical methods are expected

to exhibit a greater degree of mesh dependency at higher Peclet numbers. The results in

Fig. 3 show the effect of mesh resolution at the highest Peclet number tested in this work.

Both the velocity profile and concentration profiles in multiple directions show negligible

differences. We find that our fluid flow simulations are sufficiently resolved so as to be mesh

independent.

A final validation of this approach was to test the implementation of the Kedem-

Katchalsky equations by comparing to results from the literature.9 For one-step CPA loading

(shown in Fig. 4(a)), all cells are exposed to a normalized concentration of C=C0 ¼ 1 for a nor-

malized time of t=t0 ¼ 6. For stepwise CPA loading (shown in Fig. 4(b)), the scaled external

CPA concentration is set at C=C0 ¼ 0:5 for a time of t=t0 ¼ 2 and then raised to C=C0 ¼ 1 for

an additional t=t0 ¼ 4 (inset of Fig. 4(a)). Our results match well for both cases and we can

conclude that our model will successfully capture the dynamics of membrane transport.

TABLE II. The range of a’s tested.

Flow rate (ll/min) C0 (mol/l) s ¼ L
u (s) t0 ¼ V0

A0RTC0Lp
(s) a ¼ t0

s

0.05 1 9998 112.3 0.112

0.1 1 499 112.3 0.2246

1 1 49.9 112.3 2.246

10 1 4.999 112.3 22.46

FIG. 2. Comparing the velocity magnitudes of this fluid dynamics model with pure water at all inlets to analytical and ex-

perimental data. (a) A schematic of the geometry and the cross-sections where velocity was evaluated. (b) Scaled velocity

magnitude as a function of scaled y-position and scaled z-position for an analytical expression for fluid flow in a rectangular

duct, experimental results, and this model.
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B. Varying fluid and mass transport properties

With a water-based buffer solution entering the sample inlet and 1.5 mol/l propanediol

entering the side inlets, the viscosity ratio is close to 40:1. As the two miscible streams begin

to mix, the viscosity of the mixture changes as illustrated in Fig. 5(a). Since diffusion is hin-

dered by the more viscous liquid, as the fluids mix, the diffusivity of the mixture also changes

(Fig. 5(b)). These complex, local changes in fluid properties are determined by the flow field

itself and are accounted for in the simulation using mixing rules, based on local concentrations.

In Fig. 5, the viscosity and the diffusivity approach their respective well-mixed values by

the end of the channel. Since viscosity (and by Eq. (16), diffusivity as well) are functions of

the local propanediol concentration, this indicates that at 10 ll/min the solution has reached a

FIG. 3. Mesh dependence test of three meshes at the highest flow rate evaluated. Coarse¼ 4 788 966 elements; Mid

¼ 5 745 246 elements; Fine¼ 6 303 966 elements. (a) Velocity magnitude cross-section at a distance of 0.125 cm downstream

from the junction of the inlets. (b) Concentration cross-section at a distance of 0.125 cm downstream from the junction of the

inlets. (c) Concentration cross-section at the outlet. (d) Concentration profile along the axial length of the channel.

FIG. 4. Comparison of our implementation of the KK equations to Song9 for both one-step loading (cells exposed to

C=C0 ¼ 1 for a time of t=t0 ¼ 6) and stepwise loading (cells exposed to C=C0 ¼ 0:5 for a time of t=t0 ¼ 2, and then to

C=C0 ¼ 1 for an additional t=t0 ¼ 4). (a) Normalized intracellular water volume as a function of normalized time. The inset

describes the transient external CPA concentration to which the cells were exposed. (b) Normalized intracellular CPA con-

centration as a function of normalized time.
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nearly homogeneous state in the middle 75% of the channel. These plots are for the highest

inlet flow rates tested in this work; lower inlet flow rates become uniformly mixed closer to the

inlet.

C. Dynamic particle data

When the cells encounter an osmotic gradient, intracellular water exits the cell. If the exter-

nal solute causing the osmotic gradient is permeable, it will enter the cell. The increase in intra-

celluar solute, coupled with the decrease in intracellular solvent both increase the internal CPA

concentration. This behavior is shown in Fig. 6.

One key advantage of numerical modeling over experimental data is the ability to simulta-

neously probe the dynamic behavior of every cell as they move throughout the microchannel.

Since experimental work has shown that this loading is within the osmotic tolerance of the

cells,9 in this work, we focus particularly on the distribution of internal concentration rather

than cell volume. The response of cell volume to anisosmotic conditions has been extensively

FIG. 5. Varying fluid viscosity as a function of axial position in the microchannel. Data are taken along three parallel lines

spanning the length of the channel from the junction of the inlets to the outlet. In the transverse direction, these lines corre-

spond to one-half, one-quarter, and one-eighth of the channel width.

FIG. 6. The transient behavior of a single cell at a ¼ 0:224. Water exits the cell while CPA enters. The solid red line repre-

sents intracellular water volume; the dashed line represents intracellular moles of CPA.
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studied and verified using experimental approaches.35 Since internal CPA concentrations are

obviously more difficult to measure directly, the modeling approach can yield insight. Fig. 7

shows the same cell’s intracellular and extracellular concentration as a function of its time

throughout the device for different a values. The target loading of this cell was 1 mol/l, which

is met at different residence times throughout the mixer depending on the inlet flow rate. In

Fig. 7, lower a values have larger residence times (the x-axis). This affords the membrane

transport process enough time to complete, as seen at a’s of 0.18 and 0.224 (Figs. 7(a) and

7(b)). For this particular cell of the population, Fig. 7(b) shows the transport process takes

approximately the full residence time to complete (a ¼ 0:224). As the flow rate increases, cor-

responding to an increase in a, the residence time decreases. This cell only loads to 20% of its

target concentration for a¼ 0.898. At a¼ 6.742, the internal CPA concentration is negligible

for this cell at the channel outlet.

Fig. 7 also shows how changing a can change how a flow system is modeled. For the lower

values of a, mixing by molecular diffusion occurs in such a relatively short length down the

channel that the cell experiences a constant external concentration for almost its entire resi-

dence time. Only in this limit, modeling the membrane transport process as a batch system held

at a constant external concentration would be valid.

D. Cell population results

The dynamic data were analyzed for each individual cell released from the inlet. While

this information is useful for understanding each cells’ experience as they pass through

the microchannel, histograms provide information on the population of cells once they exit.

Fig. 8(a) shows the cellular residence time distribution at each flow rate: �; �, and � represent

the mean, maximum, and minimum residence time, respectively. Panels B-E in Fig. 8 show the

histograms associated with selected flow rates. Slower flow rates have larger residence times

FIG. 7. Transient concentration profiles for one representative particle out of the 250 particles tracked. The solid line

shows the extracellular CPA concentration; the dashed line shows the intracellular CPA concentration. Each plot displays a

different value of a, showing how this parameter changes the final CPA loading. As a increases, the loading moves further

from completion. The a values correspond to flow rates of: (a) 0.08 ll/min, (b) 0.1 ll/min, (c) 0.2 ll/min, (d) 0.4 ll/min,

and (e) 3 ll/min.
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and the deviation from the mean increases as flow rate decreases; at higher flow rates, particles

exit the channel closer in magnitude to the mean.

Fig. 9(a) shows the distribution of the cells’ internal concentration when they reach the

channel outlet for each flow rate; panels B-E show the histograms associated with selected flow

rates. Again, the � indicates the mean internal concentration, � represents the maximum inter-

nal concentration, and the � shows the minimum internal concentration. Fig. 9 clearly shows

three regimes: complete loading, incomplete loading, and negligible loading. These correspond

to a < 0:225; a 	 0:225� 1, and a > 1. As expected by the scaling, when t0 (the characteristic

time for membrane transport) is much less than s (the cell’s residence time), the cell exits the

channel before CPA loading can begin. If s is smaller than t0, the CPA has enough time to

make it across the cell membrane. When these two times are comparable, the cell will not com-

plete loading.

The larger internal concentration distributions also occur in this incomplete loading regime.

At higher a values, there is a small deviation in cell residence times and all cells have a resi-

dence time sufficiently small for negligible loading. With small a, Fig. 8 shows that there are

FIG. 8. (a) The cellular residence time distributions over the entire cell population for each flow rate simulated. The � indi-

cates the mean residence time, while the � represents the maximum residence time, and the � shows the minimum resi-

dence time. (b) A histogram of the cellular residence times at 0.2 ll/min (a ¼ 0:449). (c)-(e) Histograms of cellular

residence times at 0.1 ll/min (a ¼ 0:224), 0.3 ll/min (a ¼ 0:674), and 0.5 ll/min (a ¼ 1:123), respectively.
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large distributions in residence time. However, even the smallest residence time (within the

complete loading regime) is still large enough for the membrane transport process to complete.

When these two processes are on the same order, in this incomplete loading regime, there will

be a larger distribution of internal CPA concentration across the population of cells. In our

study, we found the largest internal concentration distribution to occur at a flow rate of 0.2 ll/min

(a ¼ 0:449).

IV. CONCLUSIONS

Cryoprotectant loading and unloading are necessary steps in the cryopreservation process.

The removal of intracellular water is critical in elimination of intracellular ice formation, which

is lethal to cells during freezing. Historically, this loading has been a batch process where

the external cryoprotectant concentration remained constant. Microfluidics has recently been

shown to provide gradual loading which is thought to minimize osmotic shock and increase

FIG. 9. (a) The internal concentration distributions over the entire cell population for each flow rate simulated. The � indi-

cates the mean internal concentration, while the � represents the maximum internal concentration, and the � shows the

minimum internal concentration. (b) A histogram of the internal concentration at 0.2 ll/min (a ¼ 0:449). (c)-(e)

Histograms of internal concentrations at 0.1 ll/min (a ¼ 0:224), 0.3 ll/min (a ¼ 0:674), and 0.5 ll/min (a ¼ 1:123),

respectively.
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post-freeze viability.9,18 In this work, we have numerically investigated the effect of laminar

shear flow on the distribution of cryoprotectant loading across a population of cells in a micro-

channel. The parabolic velocity profile ensures a distribution of cellular residence times in the

channel. Since each cell has a different residence time and path through the channel, the tran-

sient external environment varies across the population of cells. This results in a distribution of

internal CPA concentration.

The fluid and transport properties have been resolved to reflect the disparity between the

two miscible liquids, specifically their viscosities. In our simulations, viscosity and density for

the mixture are weighted by the local concentration of propanediol. More viscous liquids should

provide greater resistance to diffusion, which was accounted for by a modified Wilke-Chang

equation in our model. We have used Lagrangian tracking with inert spherical particles to rep-

resent idealized cells. The Kedem-Ketchalsky equations were then solved with the time-varying

external concentration for each cell.

Appropriate time scales for both convection through the microchannel and transport across

the cell membrane were chosen. The ratio of the two provides insight into which process is

dominant, and when the two are comparable. When a < 0:225, cells are carried through the

microchannel slow enough that cryoprotectant transport has time to complete in all cells. For

large values of a, transmembrane transport is slower than convection and CPA loading is

incomplete. Incomplete loading and distributions of intracellular CPA concentration occur when

0:225 < a < 1.

While lower flow rates (a < 0:225) provide complete CPA loading, their loading profiles

begin to approach that of a batch process with a constant concentration for the majority of the

cell’s residence time. At low enough flow rates, molecular diffusion completely mixes the two

fluids a short distance down the channel. As a increases, the transient external concentration of

a batch process and the microfluidic process grow increasingly different. This has significant

ramifications on cell viability. Song et al.9 showed that microfluidic loading resulted in higher

cell survival rates than both one-step and stepwise CPA loading (both batch processes). They

argued that the water flux and CPA flux profiles were less pronounced, and this resulted in a

smaller degree of osmotic shock. Combining this with our results, we can see that to experience

these benefits of progressive loading (smaller fluxes resulting in improved viability), operating

at the lower values of a are ill-suited because the dynamics of loading for each individual cell

more closely resembles a batch system. In addition, modeling in the low a range can be simpli-

fied: cells can be modeled with a constant external concentration, but with each cell having a

unique residence time. The particle tracking is still necessary, but the additional computational

effort required for the dynamic external CPA concentration can be removed.

Our model has several distinct advantages over previous modeling efforts of CPA loading

in a microchannel. Other simulations do not include discrete particles (cells); they either

account for the varying concentration by following a streamline, or they lump the cells together

and add a source/sink term to the species continuity equation. While the former can then use a

transient concentration as input, cells in a shear flow will migrate across streamlines in long

enough channels. This will result in an inaccurate transient concentration profile, as well as an

inaccurate residence time (as cells migrate further from the center of the channel, they will

have a slower velocity). The latter is capable of simulating the removal of CPA from the micro-

channel fluid to the cells (for CPA loading), or addition of CPA to the microchannel fluid by

the cells (in the case of CPA unloading). However, this is captured by a bulk source/sink term

to the species continuity equation and since no cells are included in this modeling, the dynam-

ics inside each cell are not observed. Modeling discrete cells using Lagrangian particle tracking

could be of use in device design as well, where cell separation and recovery is dependent on

channel geometry and operating conditions.30–32,36

The simulations presented herein also include the effect of a parabolic velocity profile in

three dimensions that the cells are initially evenly distributed across. Ramifications of this

inclusion are two-fold: (1) all cells do not have the same residence time, and (2) all cells do

not experience the same external CPA concentration throughout their residence time. This

directly affects the dynamics of CPA loading for each cell of the population. Finally, previous
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modeling efforts have treated fluid properties as constants despite most common CPAs being

much more viscous than water. Our model captures the spatially varying density, viscosity, and

CPA diffusivity. Unlike other modeling work in the literature, this has the potential to model

the more complex interactions of multiple CPAs inside a microchannel, as in CPA cocktails.

Other pioneering work has been done to show the potential of microfluidics in the field of

cryopreservation; this current work has shown that special care must be taken in choosing oper-

ating conditions.9,10,18,28 We have shown that an analysis on a population of cells is possible

and modeling can be done to avoid intracellular CPA distributions and incomplete loading,

which could lead to large variability in cell freezing behavior and thus survival. Given that os-

motic tolerances and CPA toxicity levels are known for many cell types, our model provides a

method for a further understanding of cell viability during CPA loading and unloading. In our

model we calculate cell volume, internal concentration, and residence time of every cell as it

moves throughout the microchannel. Since lethal osmotic shock can be quantified by monitor-

ing cell volume, and since CPA toxicity is a function of the CPA concentration and the expo-

sure time, our model provides a framework for comparing the relative magnitudes of each cause

of cell death during CPA loading. In the future we intend to apply our model to other microsys-

tems with spatially varying concentration fields where cell outcomes are dictated by membrane

transport.
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